

Classroom Photocopying Permission

Chapters from Teaching General Chemistry: A Materials Science Companion.
Copyright © 1993 American Chemical Society. All Rights Reserved.
For reproduction of each chapter for classroom use, contact the American
Chemical Society or report your copying to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923.

Experiments from Teaching General Chemistry: A Materials Science Companion. Copyright © 1993 American Chemical Society. All Rights Reserved. Multiple copies of the experiments may be made for classroom use only, provided that the following credit line is retained on each copy: "Reproduced with permission from *Teaching General Chemistry: A Materials Science Companion*." You may edit the experiments for your particular school or class and make photocopies of the edited experiments, provided that you use the following credit line: "Adapted with permission from *Teaching General Chemistry: A Materials Science Companion*."

Overhead Masters

Multiple copies of the overhead masters may be made for classroom use only, provided that the extant credit lines are retained on each copy: "© 1993 American Chemical Society. Reproduced with permission from *Teaching General Chemistry: A Materials Science Companion*" or "© 1995 by the Division of Chemical Education, Inc., American Chemical Society. Reproduced with permission from *Solid-State Resources*."

Laboratory Safety

DISCLAIMER

Safety information is included in each chapter of the Companion as a precaution to the readers. Although the materials, safety information, and procedures contained in this book are believed to be reliable, they should serve only as a starting point for laboratory practices. They do not purport to specify minimal legal standards or to represent the policy of the American Chemical Society. No warranty, guarantee, or representation is made by the American Chemical Society, the authors, or the editors as to the accuracy or specificity of the information contained herein, and the American Chemical Society, the authors, and the editors assume no responsibility in connection therewith. The added safety information is intended to provide basic guidelines for safe practices. Therefore, it cannot be assumed that necessary warnings or additional information and measures may not be required. Users of this book and the procedures contained herein should consult the primary literature and other sources of safe laboratory practices for more exhaustive information. See page xxv in the Text 0 Preface file in the Companion Text folder for more information.

Experiment 4

Optical Diffraction Experiments

George C. Lisensky

Notes for Instructors

Purpose

To discover how a diffraction pattern is related to a repeating dot array; to use the diffraction pattern to measure the dimensions of the repeating dot array.

Method

A visible laser beam is directed through a 35-mm slide containing repeating arrays to give a diffraction pattern. See Chapter 4.

Materials

Point source of white light, such as a Mini Maglite with the lens removed

Visible laser, such as a solid-state laser pointer with a wavelength of 670 nm

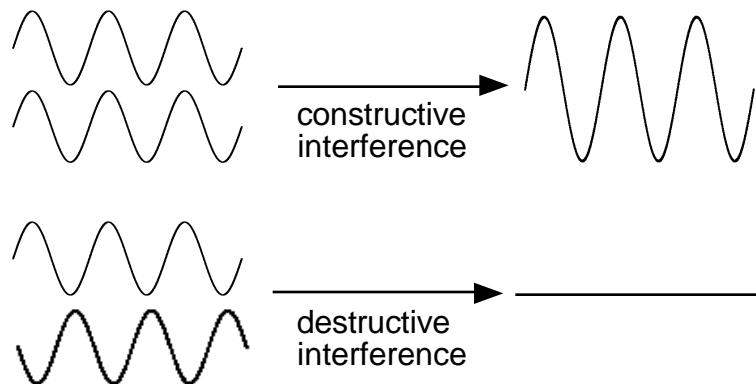
White card (such as an index card)

Rulers

35-mm slides with repeating patterns, available from the Institute for Chemical Education. Alternatively, the patterns in Figure 4 can be drawn on a Macintosh computer with a paint program (HyperCard,

MacPaint, SuperPaint, etc.), either by using the rectangle tool with a fill pattern, or by using zoom or fat bits to draw the pattern pixel by pixel. A 10.5×16.5 -inch set of patterns is printed on 11×17 -inch paper using a laser printer; this set of patterns is illuminated by two 300-W reflector floodlights, and photographed with a 1-second, f-8 exposure onto Kodak Precision Line LPD4 black-and-white, 35-mm slide film. The film is developed using Kodak D11 or D19 developer for 3 minutes, Kodak stop bath for 30 seconds, and Kodak rapid fixer for 5 minutes. The photographic procedure reduces the original $1/72$ -inch pixels on the paper to $(30 \text{ mm}) / (16.5 \text{ inch} \times 72 \text{ inch}^{-1}) = 0.025$ -mm pixels on the slide. The smallest pattern (Figure 4F or 4b with alternating black and white pixels) has a repeat distance of approximately 0.05 mm.

Hand lens (the Radio Shack pocket microscope is convenient.)


Optical Diffraction Experiments

Purpose

To discover how a diffraction pattern is related to a repeating dot array; to use the diffraction pattern to measure the dimensions of the repeating dot array.

Introduction

Diffraction of a wave by a periodic array is due to phase differences that result in constructive and destructive interference (illustrated in Figure 1). Diffraction can occur when waves pass through a periodic array if the repeat distance of the array is similar to the wavelength of the waves. Observation of diffraction patterns when beams of electrons, neutrons, or X-rays pass through crystalline solids thus serves as evidence both for the wave nature of those beams and for the periodic nature of the crystalline solids. However, X-rays are hazardous and they require special detectors.

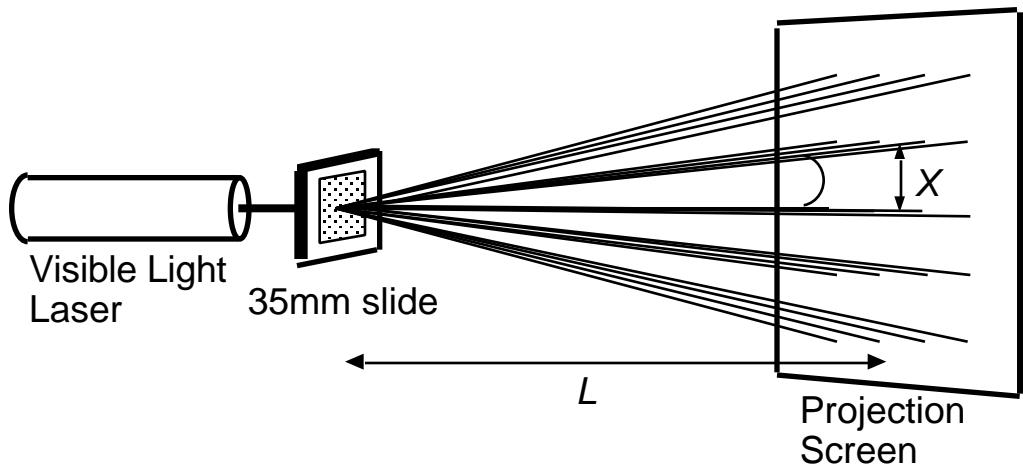
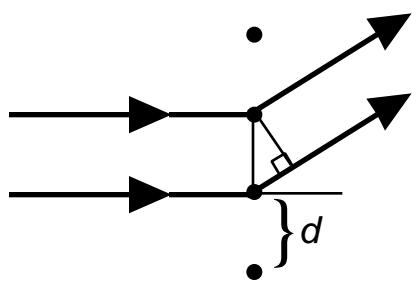
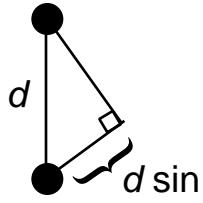
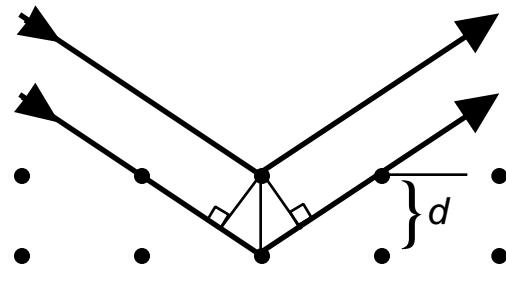


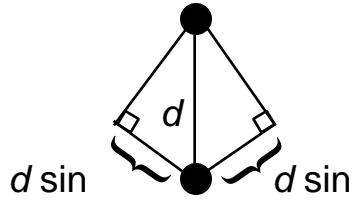
Figure 1. When waves line up (the oscillations are in phase), they add to give a bigger wave. When the peak of one wave is aligned with the trough of another, the waves annihilate each other.

Atoms, with spacings of about 10^{-10} m, require X-rays to create diffraction patterns. In this experiment, you make a change of scale. By using dots with spacings of about 10^{-4} m, visible light can be used instead of X-rays to create diffraction patterns. You will shine red laser light (670 nm wavelength) through a slide containing repeating arrays of dots, and observe Fraunhofer diffraction (see Figure 2).


NOTE This experiment was written by George C. Lisensky, Department of Chemistry, Beloit College, Beloit, WI 53511.



Figure 2. The Fraunhofer diffraction experiment.

Mathematically, the equations for Fraunhofer and Bragg diffraction (the basis of X-ray diffraction) are similar and embody the same functional dependence on the dot spacing (d), wavelength (λ), and scattering angle (θ), (see Figure 3).


Fraunhofer diffraction

Bragg diffraction

For constructive interference,
 $d \sin \theta = n$

For constructive interference,
 $2(d \sin \theta) = n$

Figure 3. A comparison of Fraunhofer diffraction with Bragg diffraction. When waves are scattered by a periodic array, the path difference between any two waves must be a whole number of wavelengths, n , if the waves are to remain in phase and give constructive interference.

In this experiment, you will first check how the size and orientation of the diffraction pattern is related to the periodic array that produced it, and then you will measure distances in diffraction pattern spacings in order to calculate the repeat distance for the array in the slide. By measuring the distances X and L , shown in Figure 2, and using the trigonometry definition that $\tan \theta = X/L$, you can solve for θ . Use of the Fraunhofer equation, $d \sin \theta = n \lambda$, then gives d when θ is known.

General Procedure

Obtain slides containing greatly reduced versions of arrays like those in Figure 4. Each photographic slide contains eight patches. Each patch has a different periodic array.

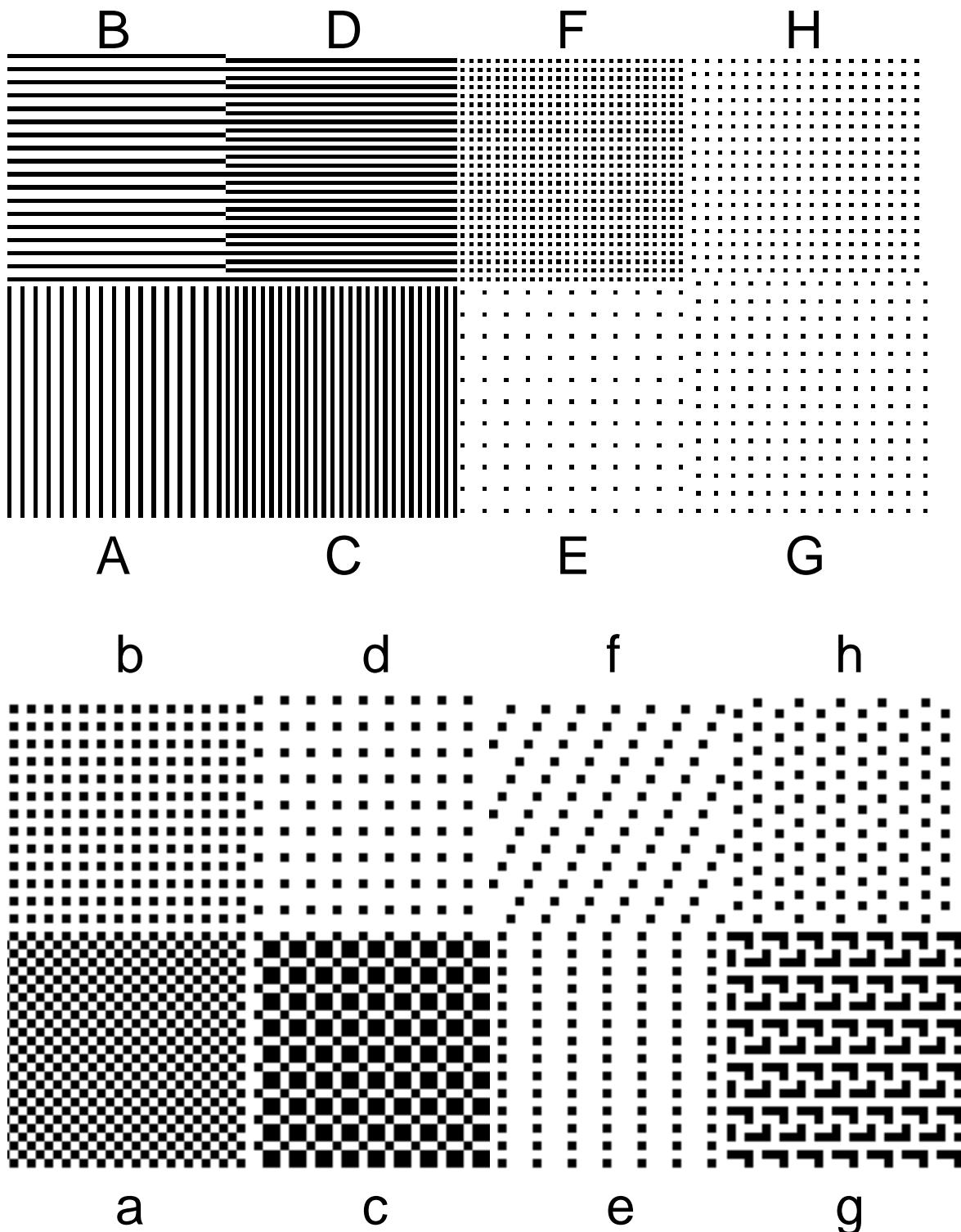
Look through a slide at a point source of white light. What do you see? Is the slide a diffraction grating? Why?

Shine a diode laser (670-nm wavelength) at a white piece of paper several meters away. Fasten the laser in place. **CAUTION: The laser is potentially dangerous. Do not look directly into a laser beam or shine a laser toward other people, as damage to the eye can occur.**

Look through a slide at the laser dot on the paper. What do you see? Why?

Put the slide in the laser beam and watch the paper. What happens? Light travels from the laser to the paper and then to your eye. Are the same results obtained if the beam goes through the slide before it hits the paper as after it hits the paper?

Pretend that you want to sketch the shape of the diffraction pattern from an array. What light source should you use (the white bulb or the laser)? Should you shine the beam through the slide or look at the spot through the slide? Pretend that you want to measure the spacing between the spots. What method is easiest?


Use a hand lens to examine the arrays on the slide. For ease of interpretation, you may prefer to keep a consistent orientation for the slide.

Questions

Answer the following questions, devising and conducting experiments to obtain data where appropriate. "Data" for this experiment will sometimes consist of a sketch of an array and a sketch of the resulting diffraction pattern, and may include measurements of distances.

1. What is the diffraction pattern of a horizontal array of lines? Of a vertical array of lines?
2. What is the diffraction pattern of a square array of dots? Of a rectangular array of dots? Of a parallelogram array of dots where the angle is not 90° ? Of a hexagonal array of dots? How do the orientations of the diffraction patterns relate to the orientation of the array of dots?

3. Find two similar arrays that differ only in size. Does an array with a smaller repeat distance give a diffraction pattern with a smaller repeat distance? Does an array with a larger repeat distance give a diffraction pattern with a larger repeat distance?
4. Choose two arrays, carefully measure some distances in the diffraction pattern, and calculate the size of the unit cell for that array. What is the size in millimeters of the spacing between dots in the array on the slides?
5. What happens if you put an additional dot in the array in the center of the unit cell? Does it matter if the dot placed in the center is the same size as those in the original array?

Figure 4. Arrays of dots that can be used to generate diffraction patterns with a laser. The actual patterns on the slide are much smaller.