

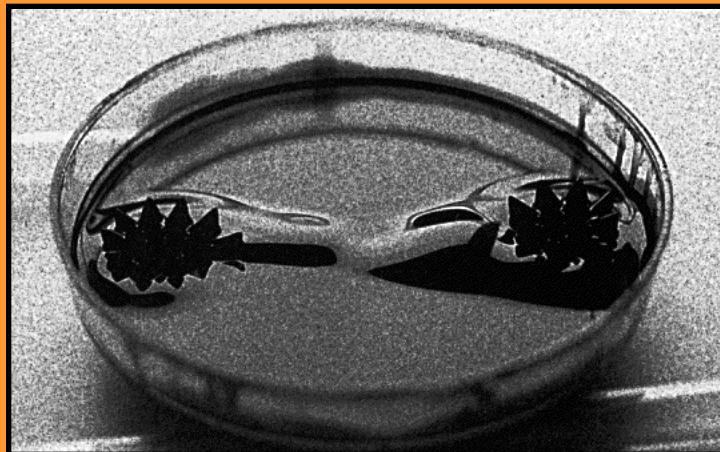
Classroom Photocopying Permission

Chapters from Teaching General Chemistry: A Materials Science Companion.
Copyright © 1993 American Chemical Society. All Rights Reserved.
For reproduction of each chapter for classroom use, contact the American
Chemical Society or report your copying to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923.

Experiments from Teaching General Chemistry: A Materials Science Companion. Copyright © 1993 American Chemical Society. All Rights Reserved. Multiple copies of the experiments may be made for classroom use only, provided that the following credit line is retained on each copy: "Reproduced with permission from *Teaching General Chemistry: A Materials Science Companion*." You may edit the experiments for your particular school or class and make photocopies of the edited experiments, provided that you use the following credit line: "Adapted with permission from *Teaching General Chemistry: A Materials Science Companion*."

Overhead Masters

Multiple copies of the overhead masters may be made for classroom use only, provided that the extant credit lines are retained on each copy: "© 1993 American Chemical Society. Reproduced with permission from *Teaching General Chemistry: A Materials Science Companion*" or "© 1995 by the Division of Chemical Education, Inc., American Chemical Society. Reproduced with permission from *Solid-State Resources*."


Laboratory Safety

DISCLAIMER

Safety information is included in each chapter of the Companion as a precaution to the readers. Although the materials, safety information, and procedures contained in this book are believed to be reliable, they should serve only as a starting point for laboratory practices. They do not purport to specify minimal legal standards or to represent the policy of the American Chemical Society. No warranty, guarantee, or representation is made by the American Chemical Society, the authors, or the editors as to the accuracy or specificity of the information contained herein, and the American Chemical Society, the authors, and the editors assume no responsibility in connection therewith. The added safety information is intended to provide basic guidelines for safe practices. Therefore, it cannot be assumed that necessary warnings or additional information and measures may not be required. Users of this book and the procedures contained herein should consult the primary literature and other sources of safe laboratory practices for more exhaustive information. See page xxv in the Text 0 Preface file in the Companion Text folder for more information.

Teaching General Chemistry

A Materials Science Companion

Arthur B. Ellis
Margret J. Geselbracht
Brian J. Johnson
George C. Lisensky
William R. Robinson

Topic Matrix

Topic	Chapter							Experiment	
	1	2							
Atoms	1	2							1
Acids and Bases						8			15
Bands					7	8			7, 8
Batteries	2	3				8			
Bohr model for hydrogen atom						8			
Bonding		3	5	6	7				2
Conductivity, thermal and electrical					7				8, 11, 12
Coordination numbers/geometry			5						2
Crystal structure	2	3	5		7		9		2, 4, 5
Defects				6		8	9		6
Diffusion							10		13
Dipoles	2								
Electrochemistry						8			
Electromagnetic radiation		4	6	7	8				4, 9
Electronegativity				7					7
Electrons	2			7	8				7, 8
Entropy						8	9		
Equilibrium						8	9		
Free energy					8	9			
Heat capacity	2								1
Intermolecular forces	2								2
Ionic solids			5						2
Ionization					8				
Kinetics				6			10		
Lasers		4				8			4, 9
Le Chatelier's principle							9		10
Magnetism	2						9		11, 14
Metals		3	5	6	7				2, 10
Molecular orbital theory					7				
Nuclear chemistry				6					6
pH						8			15
Periodic properties		3		6	7				7
Phase changes				6			9		10, 11, 12
Quantum mechanics				6	8				
Redox	2						9	10	8, 11
Semiconductors		3	5		7	8			2, 7, 9
Smart materials	1	2					9		10
Solid solutions		3		6	7		9	10	3, 7, 14
Spectroscopy - Beer's Law					7	8			7, 9
Stoichiometry		3	5				9	10	2, 11
Structures of solids		3	5	6	7		9		2, 5, 10
Superconductivity	1						9		11
Thermochemistry	2						9		
Thermodynamics				6			9	10	
Transition metals	2							10	3, 10, 11, 12
VSEPR			4	5					2
X-ray diffraction			4						4, 5

Acknowledgments

*National Science Foundation
USE-9150484, USE-9254107 and DMR*

American Chemical Society

Camille and Henry Dreyfus Foundation

Dow Chemical Company Foundation

Institute for Chemical Education

The Ad Hoc Committee for Solid State Instructional Materials

Aaron Bertrand (Georgia Institute of Technology)

Abraham Clearfield (Texas A&M University)

Denice Denton (University of Wisconsin-Madison)

John Droske (University of Wisconsin-Stevens Point)

Arthur B. Ellis (University of Wisconsin-Madison), Chair

Paul Gaus (The College of Wooster)

Margret Geselbracht (Reed College)

Martha Greenblatt (Rutgers University)

Roald Hoffmann (Cornell University)

Allan Jacobson (University of Houston)

Brian Johnson (St. John's University)

David Johnson (University of Oregon)

Edward Kostiner (University of Connecticut)

Nathan Lewis (California Institute of Technology)

George Lisensky (Beloit College)

Thomas Mallouk (Pennsylvania State University)

Ludwig Mayer (San Jose State University)

Robert McCarley (Iowa State University)

Joel Miller (University of Utah)

Donald Murphy (AT&T Bell Laboratories)

William Robinson (Purdue University)

Don Showalter (University of Wisconsin-Stevens Point)

Duward Shriver (Northwestern University)

Albert Thompson, Jr. (Spelman College)

M. Stanley Whittingham (SUNY at Binghamton)

Gary Wnek (Rensselaer Polytechnic Institute)

Aaron Wold (Brown University)

Products

“Optical Transform Kit,” ICE, 1991, 1993.

“ICE Solid-State Model Kit,” ICE, 1992, 1994.

“Teaching General Chemistry: A Materials Science Companion,” ACS Books, 1993.

“Teaching Chemistry: A Materials Science Anthology,” ACS Satellite Seminar, 1994.

“Solid State Resources,” JCE: Software, 1995.

Why Put Solids in the Foundation?

- Career preparation
- Recognizable examples
- Complementarity to molecular examples
- Interdisciplinary connections
- Three-dimensional visualization skills
- High-tech applications
- Teacher-friendly

Cost-effective

Minimal disposal

Easy to store and transport