Chemistry

JCE 94.07 July 2017 Issue Highlights

The July 2017 issue of the Journal of Chemical Education is now available online to subscribers. Topics featured in this issue include: artificial photosynthesis; developing laboratory skills through technology; using videos to enhance learning; smartphones in the laboratory; 3D printing as a teaching resource; exploring and understanding structure; making chemistry connections; research on inquiry; from the archives: elephant's toothpaste.

DIY Vapor Catalyzed Chemiluminescence

I recently watched a video in which a chemist (who goes by the nickname “NurdRage”) activated a chemiluminescent reaction by vapor deposition. I wanted to try it out for myself! Unfortunately, oxalyl chloride is toxic, corrosive, and a lachrymator. Thus, the experiment conducted by NurdRage needs to be conducted in a hood, and it is not particularly amenable to simple presentations. I began to wonder how I could create this vapor activated chemiluminescence using simple materials.

Nerdy Science Shirt Friday

Over the past 30 years, numerous articles have been written about the importance of student teacher relationships. The National Education Association, NEA, offers advice for beginning teachers that includes establishing the classroom climate, conducting class efficiently, and reaching all students. When teachers effectively connect to their students, discipline problems decrease and student engagement increases.

This post was submitted for the 2017 ChemEd X Call for Contributions: Creating a Classroom Culture.

Soap Making

Heidi Parks offers a soap-making lab or activity that can be run in a chemistry class with 25-30 students working at the same time. She usually does this activity right before spring break, as it provides enough time for the soap to harden and cure (high school students are impatient to use their soaps right away, which you should not do with cold process soap). She has used this soap making activity at different points in the curriculum: during intermolecular forces, during acids and bases, and during stoichiometry. 

Chemical Thinking Interactives

As part of a two-week Chemistry Modeling Workshop™ in Houston, TX, I had the opportunity to read the Journal of Chemical Education article “When Atoms Want” by Vicente Talanquer of the University of Arizona. I researched Dr. Talanquer and discovered he created a collection of simulations called Chemical Thinking Interactives (CTI). These digital tools illustrate many chemistry topics with a focus on the particulate nature of matter.

Increasing Access to Stoichiometry Through Differentiated In-Class Practice

In a recent post, I shared sample quiz questions as to how I have differentiated assessment within the mole unit. Here, I share a specific multi-day sequence within the stoichiometry unit. I have written extensively about the project that drives this unit (within the following blog posts: Why consider trying project based learning?, Backwards planning your PBL unit -­ An Overview of an Entire Unit and What ARE my students actually learning during this long term project (PBL)?), but very little about specific learning tasks. Below is a two day sequence of stoichiometry practice that I set up in my classroom. Stations are set up around the room and students rotate as necessary.

Selling and Implementing Roles and Teamwork in the Classroom

I saw the process of students thinking like scientists but what I struggled with, and I imagine many others do as well, is how students work together in groups. Yes...I know it is important but is this a big battle that I want to fight? I was fortunate to meet several people who have developed some wonderful “tricks of the trade” to help students work as “teams”.

 

Creating a Classroom Culture - Call for Contributions

This Call for Contributions has closed. As many school districts are moving toward incorporating student-centered curriculum and pedagogy, many teachers have found that it can be difficult to initiate a classroom culture that encourages students to embrace the change which calls for them to engage in discussions and take more responsibility for their own learning. Chemical Education Xchange (ChemEd X) is interested in learning about how teachers are creating a culture of student-centered learning in their classrooms. For this reason, we are initiating our content specific CALL FOR CONTRIBUTIONS centered on the concept of “Creating a Classroom Culture”.