A new semester begins!
A good inquiry activity is an engaging way to begin a new semester.
A good inquiry activity is an engaging way to begin a new semester.
This article describes a three week lesson plan for teaching stoichiometry using an algorithmic method. Two labs (one designed as a laboratory quiz) several cooperative learning exercises, student worksheets and guided instructional frameworks (forcing students to develop good habits in writing measures and doing problem solving) are included. The highlight of the lessons is the "chemistry carol" (based on Felix Mendelssohn's music for "Hark! The Herald Angels Sing") in which students recite a five-step algorithm for completing stoichiometry problems.
This worksheet is intended to be used as a "Guided Instructional Activity" (GIA). Students read a statement that gives a either a conversion factor or a pair of related measures and then write the information as two equivalent fractions ("conversion factors") and as an equality. In each representation, students are directed to give the numeral of the measure, unit, and identity of the chemical.
Last Thursday (11/6/14) I attended a workshop on NGSS through our local RESA (essentially an ISD for the county/region). I’d like to touch on some of the things I took away from this workshop and will post again after the next follow-up workshops in December and March.
This set of three worksheets are intended to be used as collaborative "Guided Instructional Activities" (GIAs). Two students cooperate to complete the steps of a stoichiometry problem, alternately doing parts of the process as they explain what they are doing and evaluate their partner's work.
The three "Guided Instructional Activities" in this activity are three cooperative learning pieces in which students are guided through the process of converting from one unit to moles (or moles to a unit) by the method of "unit analysis" (dimensional analysis). Students alternate steps in the process and evaluate the success of each step.
This worksheet is intended to be used as a "Guided Instructional Activity" (GIA). It asks students to find the molar mass of selected elements and write the molar mass as two equivalent fractions ("conversion factors") and as an equality. It is designed to help develop good habits in representing molar mass and other conversion factors, and to emphasize the idea that a conversion factor has a numerator and denominator that "name" identical quantities using different measures.
Given the amount of one reactant, students must use stoichiometry to find the ideal amount of the second reagent to use to create purple fireworks. The teacher ignites each groups' fireworks. Ideal mixture create little or no ash. Student assignment sheet with directions (and different initial amounts) plus teacher information and sample answers are included. This is an exciting and engaging activity that can be used as a stoichiometry quiz.
We teach it, some celebrate it, and we try to make it engaging for our students. What is it? The mole concept and Mole Day! So how do we make it engaging for our students? Let me introduce #molympics.
If you are on Twitter and follow #chemchat, you may have recently seen some beautiful, rotating 3D atomic and molecular models from Dave Doherty @atomsNMolecules. I was curious about these models and after contacting Dave, he introduced me to The Atomic Dashboard.