Especially JCE: September 2017
Erica Jacobsen shares highlights from the September 2017 issue of the Journal of Chemical Education that are of special interest to high school chemistry teachers.
Erica Jacobsen shares highlights from the September 2017 issue of the Journal of Chemical Education that are of special interest to high school chemistry teachers.
During my first year of teaching (in Indianapolis, IN), I was inspired by some research I had read as well as some other teachers in the Indy area who were flipping their classes. I was at a small parochial school where parental and administrative support for technology inclusion was present. My principal outfitted me with the tools I needed to “flip” my classes and record tutorial videos. Things went pretty well. It was a learning curve for many but I also had good feedback from students and parents.
This post was submitted for the 2017 ChemEd X Call for Contributions: Creating a Classroom Culture.
As part of a two-week Chemistry Modeling Workshop™ in Houston, TX, I had the opportunity to read the Journal of Chemical Education article “When Atoms Want” by Vicente Talanquer of the University of Arizona. I researched Dr. Talanquer and discovered he created a collection of simulations called Chemical Thinking Interactives (CTI). These digital tools illustrate many chemistry topics with a focus on the particulate nature of matter.
I will share how I use the Target Inquiry activity, Change You Can Believe In. I have realized that I need to include particulate models within the assessments after the lab to fully evaluate my student's conceptual understanding.
When describing abstract concepts like chemical bonding, it always seems to feel far too easy for both teachers and students to resort to the “wants” and “needs” of atoms. After all, we understand what it means to want, need, or like something, so it often feels appropriate (and easier) to use a relatable metaphor or subtly anthropomorphize these atoms to accommodate our students’ current reasoning abilities. While predicting the types of bonds that will form and the general idea behind how atoms bond can be answered correctly using such relatable phrases or ideas, the elephant in the room still in remains—do our students really understand why these atoms bond?
Alchemie Animator by Alchemie, LLC is the latest creation from Julia Winter, CEO of Alchemie and the creator of the app Chairs. The free app is available in the itunes store and is currently designed for both iPhone and iPad.
Looking for a better way to teach stoichiometry? Melissa incorporates modeling into BCA tables.
ChemEd X and the Journal of Chemical Education (JCE) are collaborating to offer a virtual conference like most have never seen before. It is not a webinar. You do not have to schedule specific hours to view a live presentation. I think of it as similar to a virtual book/journal club with the added benefit of having the author leading it. In this case, authors were selected from among those who have published recent articles, activities and research in JCE on the topic of student-centered instruction in chemistry. The theme of this inaugural conference is Chemistry Instruction for the Next Generation.
In an effort to better understand my high school students' knowledge of what is happening during phase changes, heating curve calculations, and the ever popular can crush demo, I run them through a series of activities. First, I ask my students "What Temperature Does Water Boil At?"
Atomsmith works really well on Chromebooks and other platforms. Students can manipulate molecules, add water, do experiments, heat solutions and examine intermolecular forces all on the particulate level. Another nice feature is the "Experiment" section. There are a number of guided activities, usually never more than a page or two. I have found them to be great supplements for activities, experiments and demonstrations.