ChemEd X contributors offer their ideas and opinions on a broad spectrum of topics pertaining to chemical education.
Blogs at ChemEd X reflect the opinions of the contributors and are open to comments. Only selected contributors blog at ChemEd X. If you would like to blog regularly at ChemEd X, please use our Contribution form to request an invitation to do so from one of our editors.
I have been involved in several types of community outreach projects to promote science education and chemistry. One of the best was a biannual event I worked on with teachers from each elementary school in our district and from our middle school. It was a Science Extravaganza.
“What are you reading?” This twist on the traditional icebreaker question kicked off a meeting session last summer. I was eager for the conversation to make its way around the table to me. On my plane ride the day before, I’d started The Martian by Andy Weir, and I was hooked.
The “Elephant Toothpaste” experiment is a very popular, albeit messy chemistry demonstration. To carry out this experiment, place a 250 mL graduated cylinder on something that you wouldn’t mind getting messy.
Have you read “Making Thinking Visible”? You should. It focuses on making student thinking visible to the teacher. While still learning to use the visible thinking routines, I really feel more conscious of students’ understandings than ever.
Here is a sample activity that I adapted to fit my honor chemistry students’ needs:
Last night I had the opportunity to do another lab that I wrote with my students. It is so exciting to see something go from words on a screen to a group of students working together in a laboratory. I learned so much as I walked around the room last night. Here are a few highlights:
Last year while attending the Biennial Conference on Chemical Education at GVSU I had the opportunity to hear a talk that showed a video of a chemical demonstration showing the burning of magnesium metal. We have all seen many of these videos (thank you YouTube) and probably have performed this demo for our own students many times. During the video it may have been represented with a chemical equation followed by the students being asked to balance the equation or maybe even predict the products. Although the use of video including the showing of the equation nicely represents the macroscopic and symbolic representation, what was so unique about this particular video is that it also included the particulate representation embedded on top of the video of the demo. This was the first time I had seen the particulate level representation done like that and so I was intrigued in wanting to find more of these representations.
Since my last blog about modeling, there have been additional opportunities added for training. If you don't see a location that works for you on this list, check out the AMTA website.(link is external)
During our “Periodic Table and Periodicity" unit, we take about 3 days to learn the content and another 3-4 days to practice the content (more for Chemistry 1, less for Honors). One way that I have my students review the content is by playing a board game that I recreated from an NSTA conference a few years ago.
There are occasionally discussions amongst educators about the efficacy of using technology in the classroom. Does it really make a difference? One train of thought is looking at the use of technology through the SAMR lens. Is the technology simply a Substitution? Or does it Augment the learning compared to previous methods of learning the same material. Maybe the use of technology Modifies the learning tasks. Or will the technology actually Redefine the learning by allowing the student to interact with knowledge in a way that is impossible without this technology. With this in mind, I set about to use an iPad app and an online simulation to introduce my IB Chemistry students to the concept of Maxwell-Boltzmann distribution curves. I'm not sure exactly where it fits on the SAMR continuum, but without the simulations I could only show my students the graphical representation of the Maxwell-Boltzmann distribution curve. By using the simulations, I am attempting to help my students develope a deeper understanding of them.
I have taught for almost 30 years and have attended my fair share of professional development. Many of these have been very good (ChemEd, BCCE, ACS, NSTA, and ICE) but nothing has been as motivating, influential, and beneficial to my career as getting involved in the Chemistry Olympiad. Every year, the ACS sponsors a local section contest for high school students.