(e)Xplore ChemEd X published collections such as activities, articles, demonstrations, and assessment tools.
The Xplore area includes 'published' ChemEd X resources such as activities, articles, demonstrations, and assessment tools. The Search service is also in the Xplore area.
This set of three worksheets are intended to be used as collaborative "Guided Instructional Activities" (GIAs). Two students cooperate to complete the steps of a stoichiometry problem, alternately doing parts of the process as they explain what they are doing and evaluate their partner's work.
The three "Guided Instructional Activities" in this activity are three cooperative learning pieces in which students are guided through the process of converting from one unit to moles (or moles to a unit) by the method of "unit analysis" (dimensional analysis). Students alternate steps in the process and evaluate the success of each step.
This worksheet asks students to do basic conversions of mass or molecules to moles and vice versa.
This worksheet is intended to be used as a "Guided Instructional Activity" (GIA). It asks students to find the molar mass of selected elements and write the molar mass as two equivalent fractions ("conversion factors") and as an equality. It is designed to help develop good habits in representing molar mass and other conversion factors, and to emphasize the idea that a conversion factor has a numerator and denominator that "name" identical quantities using different measures.
Given the amount of one reactant, students must use stoichiometry to find the ideal amount of the second reagent to use to create purple fireworks. The teacher ignites each groups' fireworks. Ideal mixture create little or no ash. Student assignment sheet with directions (and different initial amounts) plus teacher information and sample answers are included. This is an exciting and engaging activity that can be used as a stoichiometry quiz.
Students combine sodium carbonate and hydrochloric acid generating carbon dioxide gas which is allowed to escape. They measure the actual yield of carbon dioxide produced (missing mass), calculate the theoretical yield using stoichiometry, and then the percent yield. Students understand that 100% yield is the most appropriate answer (based on the Law of Conservation of Mass), so after considering the meaning of significant figures and the uncertainty of their measurements they are asked to decide if they did (or did not) get an answer that might indicate the validity of the Law.
Communicating the Value of Chemistry The October 2014 issue of the Journal of Chemical Education is available online to subscribers [http://pubs.acs.org/toc/jceda8/91/10]. The October issue features sustainability; celebrating National Chemistry Week 2014 with articles on food and candy; increasing chemistry understanding for the nonscientist; nanochemistry; investigating materials: plastic & paper; exploring sound; research on chemical equilibrium instruction and student understanding of scale.
Advanced Placement Chemistry Special Issue The September 2014 issue of the Journal of Chemical Education is available online to subscribers [http://pubs.acs.org/toc/jceda8/91/9]. The September issue features a special issue of 20 contributions on Advanced Placement (AP) Chemistry as well as many other articles to help students learn chemistry.
Using Models for Learning Chemistry The August 2014 issue of the Journal of Chemical Education is now available online to subscribers at http://pubs.acs.org/toc/jceda8/91/8. The August issue contains content to spark thinking about models and how to foster meaningful learning in chemistry classrooms and improve student understanding.
The Royal Society of Chemistry became increasingly frustrated in 2004 when academics (the “when I was a lad” variety”), National Tabloids (it’s “‘elf un safety gone mad” variety), and many teachers were quoting health & safety fears as the reasons not to do practical science work and demonstrations.