Using Visual BCA Tables to Teach Limiting Reactants
Looking for a better way to teach stoichiometry? Melissa incorporates modeling into BCA tables.
Looking for a better way to teach stoichiometry? Melissa incorporates modeling into BCA tables.
As many chemistry teachers know, grading lab reports can be a very time-consuming task. For me, the lab report that has required the most time to grade is a stoichiometry lab that I have been doing the past couple years. Though we do at least four “formal” lab reports each year, what makes this one different is that it involves a lot more calculations and subsequent results than any of our other labs. Regardless of how well they organized their report or wrote their conclusions, their results need to be checked for accuracy. This takes time. Even after eventually being able to generally eyeball their work, it still takes more time than I would like. So, this year I finally decided to sit down and generate a tool for me to expedite this process—the stoichiometry calculator.
Formative assessment can be a double edged sword. It can be and often is extremely helpful. Some quick short three or four well worded questions at the beginning of a unit provides information about student abilities. A teacher can skip teaching information that kids already know or the teacher can discover concepts that he or she assumed students know but do not. Formative assessment about "Moles" can provide data that is hard to deal with. Can the students handle scientific notation? How well are students at basic math skills?
Students are told that they have to determine the amount of active ingredient in an antacid tablet. Then I ask them if they have any questions. First it starts with blank stares...then slowly the questions start coming. What exactly is the active ingredient? What does it react with? They are provided information that the active ingredient is baking soda.
The purpose of a lab practicum is to assess a student’s understanding of the content by completing a hands-on challenge. These assessments focus more on problem-solving skills than technique.
This activity was submitted for a 2016 ChemEd X Call for Contributions soliciting input regarding the big ideas being put forth by organizations like AP. The author shares a lab activity that relies on connections - between stoichiometry, esterification, equilibrium, kinetics, titrations and uncertainty of calculations. He also shares the resources he created.
Like most chemistry teachers, one of the first things I go over in the beginning of the year is unit conversions. Students come into my class with all sorts of prior knowledge concerning unit conversions; some good, some bad and some downright ugly.
I recently stumbled across a blog about the use of BCA (Before Change After) tables for stoichiometry written by Lowell Thomson. I was thrilled to discover ChemEd Xchange! I wanted to share my journey, spurred on by my students, into the extensive use of the BCA approach in AP and
In this blog post I'll describe a recent attempt at using BCA Tables for teaching stoichiometry. I discuss the method I used with one introductory chemistry class to teach both the algorithm method and BCA tables to learn more about a technique I've been curious about for a while.
It is really hard to get to know THAT kid especially when I have classes of other kids who are important and have needs also. Stack on top of this teenage hormones, spring, nice weather, prom, AP tests, state testing and trying to sell as hard as I can how fun "stoichiometry" is....I now run the risk of turning a bunch of other kids into THAT kid pretty quickly.