computer-based learning

Chemical Thinking Interactives

As part of a two-week Chemistry Modeling Workshop™ in Houston, TX, I had the opportunity to read the by Vicente Talanquer of the University of Arizona. I researched Dr. Talanquer and discovered he created a collection of simulations called Chemical Thinking Interactives (CTI). These digital tools illustrate many chemistry topics with a focus on the particulate nature of matter.

An Interesting Way to look at Reactions....

Atomsmith works really well on Chromebooks and other platforms. Students can manipulate molecules, add water, do experiments, heat solutions and examine intermolecular forces all on the particulate level. Another nice feature is the "Experiment" section. There are a number of guided activities, usually never more than a page or two. I have found them to be great supplements for activities, experiments and demonstrations.

Extension Activity with Isotopes Matter

After receiving positive feedback from Peter Mahaffy, the IUPAC project co-chair of Isotopes Matter, I decided to add an additional component to the original isotope assignment I posted. The second component of the assignment focuses on the applications of both radioactive and stable isotopes using the interactive IUPAC periodic table.

Google Forms as an Assessment Tool

This school year my district is launching a 1:1 Chromebook initiative. 6th and 9th graders will receive their Chromebooks next semester as part of the rollout. In the meantime, I continue to have access to my Chromebook cart from the Blending Learning pilot I participated in last school year. My goal is to incorporate even more tech use when appropriate; so far, I have increased Chromebook use in my classroom for things like warm up questions, EdPuzzles, and quizzes. My experience with quizzes has been especially interesting.

Concept Mapping in Chemistry

It's been a few days since my summer break began. I have had a few days to decompress, relax, and think about my next post. I have been planning to write about concept mapping since the end of our first semester. I first recognized the effects of concept mapping in the classroom when I read Shannon Bowen's blog post last December.

A Look Into My General Chemistry Reactions Unit- Supporting Students with Making Connections among the Nanoscopic and Macroscopic

Organic chemistry was when I fell in love with chemistry. Also known as Chem 210 at the University of Michigan, it was the first time I actually started to connect what was going on at the nanoscopic level to the macroscopic world. Since then, I’ve been hooked.

 

Clarifying Electron Configurations

We’ve all seen and use the so-called Aufbau Diagram. It is a mnemonic used to remember the order of “filling” of atomic orbitals during the construction of the ground state electron configurations of the elements. The presentation of this diagram is largely disconnected from any physical meaning. Here’s what we tell our students: “Memorize the diagram, learn to use it, and you’re guaranteed to get the right answer.”

Conversations, Confessions, Confusions (and hopefully some Clarity) on Electronic Configurations

A complete understanding of why each element has a particular electronic configurations is a very complex subject. Even so, some confusion regarding the electronic configurations of the elements may be alleviated by looking at the physical properties of the electronic orbitals.