computer-based learning

Blending a Periodicity Unit

Previously I wrote about taking part in a district-wide high school blended learning pilot. You can read about it here. I received my Chromebook cart near the end of February/beginning of March. A little late but just in time for the periodicity unit I was planning as a blended unit. The following is a breakdown of how I designed the unit.

Building Atoms: One App at a Time

In my high school chemistry class, a unit we cover is that of atomic structure. In particular, given an elements symbol, mass number, atomic number, and charge, the objective would be for the student to determine the atoms number of protons, neutrons, and electrons. I have several apps/program suggestions that can be useful for this purpose.

Using "Chemical Detectives" iPad App to Practice Spectroscopy

The new IB curriculum includes compound identification using NMR, IR and Mass spectroscopy. My current high school lab does not have any of these available. And that's no surprise, given the cost of these machines is far out of our budget. And while some of you may be lucky enough to have a connection to a local university or college, for the rest of us what are the options when it comes to teaching spectroscopy?

 

Blended Learning Pilot: #1

Last year, I researched and practiced what I thought to be "flipping the classroom". But, now that I am taking part in a district-wide "High School Blended Learning Pilot", I can say that I was attempting blended learning early in my teaching career. You see, the flipped classroom is really a small subtype of blended learning. So, the goal of this post is to define blended learning and share what my professional development has in store for me during this academic year.

Four Things I Learned on the Path to the Right Online Learning Platform

Edmodo, Coursesites, Schoology…which digital learning platform is best for you? I’ve been searching for the right, free fit for me for the last three years. My journey has taken me from Edmodo to Coursesites to Schoology. I learned four valuable lessons about myself along the way that may help you make your own decision.

A Thing for Chairs!

Over the past two years, I have immersed myself in designing mobile games for organic chemistry: founding a company called Alchemie and building a team to develop these games. The first of our games is called Chairs! (The exclamation point comes from the fact that an app called Chairs already existed in the AppStore.) The game Chairs! is what we call our proof-of-concept. Folks were a bit incredulous when we told them we design games that make learning organic chemistry intuitive and fun. 

Representing the Macroscopic, Particulate, Symbolic, & Real World Representations of Chemical Reactions.

 Last year while attending the Biennial Conference on Chemical Education at GVSU I had the opportunity to hear a talk that showed a video of a chemical demonstration showing the burning of magnesium metal.  We have all seen many of these videos (thank you YouTube) and probably have performed this demo for our own students many times.  During the video it may have been represented with a chemical equation followed by the students being asked to balance the equation or maybe even predict the products.  Although the use of video including the showing of the equation nicely represents the macroscopic and symbolic representation, what was so unique about this particular video is that it also included the particulate representation embedded on top of the video of the demo.  This was the first time I had seen the particulate level representation done like that and so I was intrigued in wanting to find more of these representations.