ChemEd X activities are student-centered resources intended to aid learning chemistry topics.
ChemEd X encourages engaging activities where students (with guidance from the teacher) pose questions, analyze data, and make observations to offer a plausible explanation supported by data and consistent with physical observations.
For a recent unit on organic chemistry for my IB students, I tried something new. I gave them a handout with a list of organic compounds (by class/functional group) and a list of mechanisms and reaction types. Their task (in small groups), using either butcher paper or a large whiteboard, was to create a flow chart of reaction pathways.
The lab was a success as I watched startled students produce the so-called barking dog sound as they combusted the hydrogen gas in their inverted test tubes.
Students will build models of isomers while the instructor walks around from station to station to critique the models. If the model is incorrect, the students rebuild until they get it right. The paper that accompanies this assignment is very easy to grade.
I have used several different versions of the Silver Mirror or Tollen's Test lab. I am sharing the method that has proven to be the most reliable for me. The solutions should be made fresh, the directions must be followed closely and timing is very important. I like the fact that relatively small amounts of the chemicals are required, but as always you must be vigilant with safety precautions.
After receiving positive feedback from Peter Mahaffy, the IUPAC project co-chair of Isotopes Matter, I decided to add an additional component to the original isotope assignment I posted. The second component of the assignment focuses on the applications of both radioactive and stable isotopes using the interactive IUPAC periodic table.
This activity was submitted for a 2016 ChemEd X Call for Contributions soliciting input regarding the big ideas being put forth by organizations like AP. The author shares a lab activity that relies on connections - between stoichiometry, esterification, equilibrium, kinetics, titrations and uncertainty of calculations. He also shares the resources he created.
In a previous post I talked about an equation balancing lab that I have been doing with my students involving building molecular models. This time I would like to focus on another lab that I have developed for my model kits.
Isotopes Matter is a digital learning tool, developed by IUPAC Isotopic Periodic Table, designed to explain isotopes as well as their importance. This resource incorporates mass spectroscopy data into each of the key ideas as well as provides multiple examples as to how varying isotopes are commonly used.
Just this week I'm reviewing equilibrium with my IB Chemistry seniors after they finished some summer study on the topic. One of our classes was spent manipulating a classic equilibrium involving copper ions and a copper-chloride complex ion.
I am a very firm believer that the world of physical science can be visualized and is an excellent medium for teaching students to model and to picture what happens at the molecular level. The first topic we decided to explore was balancing chemical equations. This seems like such a simple topic to chemistry teachers but I have found that it can be quite challenging for many of my inner city students. The first thing they ask me for is a list of rules that they can follow. We can discuss the problems of algorithmic teaching in a later post! For the time being let’s talk about how to get students to understand why they need to balance equations and discuss what we can call “Conservation of Atoms”.